Major Project Report

Software Engineering 14:332:452:01

Group 2 - Robert Reid, Kiernan King, Daniel Mitchinson, Brian Jimenez, Wiktor Fedorowiat
May 2nd, 2022

*Drafted by Robert Reid and Kiernan King
Introduction

This report serves to highlight the software engineering processes taken by our group in
developing our business application which we called FreshTime. This system’s purpose is to

provide companies that utilize delivery couriers to provide customer service a way to attain
useful metrics in aiding in financial planning.

Final Requirements Table

Functional Requirements

Must allow input of a database of locations of restaurants and points within the area of service.
Must now allow databases with less than 25 restaurants.

Must assume that a maximum of 1000 orders will be served at any given time.

Should calculate the average wait time per order.

Should output a mapping of restaurant orders and drivers that achieve the target average wait
time.

Must have an interface for uploading a database or inputting database connection credentials.
Must include middleware for interfacing with routing service API

Must be able to get rid of invalid locations within the area of service based on organization
parameters.

Non Functional Requirements

Must have a document instructing users on how to format their restaurant and area of service
database.

Must be easy to use.

Must display data graphically.

Must be able to output data to a local file system.

Design Features Specification
3.3 System Features (From Software Specification Document)

- Application User Interface

- Database Management Integration

- System outputs optimal matching of drivers to restaurants in order for customers to have
an average wait time lower than organization needs.

- Display average time assuming 1000 deliveries per hour, and a graph showing how the
number of drivers changes as the number or restaurants is doubled from a sample set of

25.
- Support for different databases
- MongoDB
- mySQL
- Local file upload

Final System Architectural Diagrams
e Conceptual View Diagram

Cpen Route Service Lser Interface

ORS factory Controller Algorithm

Datazetinterface Farser

Dataset

e Process View Diagram

B =thread=
. :thlretan:fb i htrFmC?;BSj | ;l}hre_?r? Open Route Service
ser Interface reshTime Controller gornim Interface
7]
User
Formaited
User
Dataset
<thread= Cpen Route Service

Database Parzer

The conceptual view diagram features the components we identified would be required to fulfill
the functional and nonfunctional requirements. Initial version of the conceptual view diagram did
not include a dataset interface component or a dedicated software controller component. The
appearance of the dataset interface component in sprint three reflects the additional feature of
support for multiple database solutions. The process view diagram shows how the system
consists of a single process that initializes a running user interface thread and subsequently the
other software components at runtime. In the process view diagram it can be clearly seen that the
Open Route Service, User, and Formatted User Dataset are third party components of the system
and how they are included in the behavior of the system.

Final System Modeling Diagrams
e Use Case Diagram

User Interface

Select Database
Specifications

[Dataset Interface

L

Algorithm

\\-a.

Parser
Spen Route Servieg

Database format
documentation

imulate restaurant
driver matching and
delivery

alculate average
FreshFooq Coqipa delivery time

depending on amoun
of restaurants

Display algorithm
resulis

Business
Information
(Restaurants and
area of service)

Export algorithm
resuits

Format database

The above use case diagram reflects the typical use cases of the FreshTime system. The user is
intended to be a business or otherwise organization that has a delivery service with a set of 25
from a single point to an area of service. The FreshFood company utilizes at least 25 restaurants
to be distributed over an area of service. We decided to make our own dataset using Jersey City
NJ, which consists of over 150 restaurants. In addition, our team developed an algorithm in excel
to generate over 4500 locations around the area that indicate this area of service. Extensive
documentation and instruction on how a business can generate this area of service is available to
customers. Customers of FreshTime should take their dataset and generate a set of data points
using our specifications, and then upload this using our supported database solutions. These
solutions include mongoDB, a local file upload, and projected mySQL support. The user can
then simulate the restaurant driver matching and delivery and export the metrics for their own
purposes.

e Sequence Diagram

Algorithm Databasze OpenRouteService

| i
®—» Send Request fo Locafion Database |

Return JSOM List of Objects

: Parse
Fesponse

PR Return Distance Malrix_____

zenerate Distance Matrix

Match Drivers
to Orders via
Distance Matrix

Y

Verify all information
is comect

g g S S

4
-

The above sequence diagram depicts the operations performed by the algorithm as it returns the
distance matrix from the routing service API, Open Route Service.

o—»@; launched

Business Diagram

Register new
restaurant for delivery
service

FreshTime

h i

Import dataset of
restaurants

Business

F

Locate closest
delivery driver to

restaurant

v
Format database

A

Export delivery time

results

Match driver with
customer

| S —

h
oy

Calculate average
delivery time
— 0

Display delivery time
results

The above business diagram reflects how the FreshTime application process integrates
into organizational patterns and assists the company in automatically generating useful

metrics based on their restaurant delivery service.

State Diagram

MongoDEB Cluster Connection selected

Start Over Selected

Y

Start Over Selected

v

] File upload selected

J Local File Upload
L Interface Launched

}7

Fy

Algorithm completed unsuccessfully [Invalid Dataset]

Files uploaded
unsuccessfully

Restaurants and Area of
Service files uploaded
successfully

MongoDE Interface
Launched

Database
Information Entered
Successfully

h A

Files uploaded
successfully

Run Mapping Algorithm

"Go Back' or "Start Over Selected

Algorithm completed successiully

¥

File View Launched

¥

File exported via Graph or
Mapping

The above state diagram reflects the current FreshTime application operation as seen from the

user’s perspective.
e C(lass Diagram

DatabaseParse ORSfactory

-LongJIndex: int=3 e
-LatJIndex: int=5 +client : Client

. R +getDistance(query : String) : Strin,
+getCoordinates(latLong : String) : doublef] / +gelQuerv(pégplerYArrayL?s?KPersgn>) : String

+of(coordinates : double[]) : Location

N

Dataset Interface Algorithm
~client: MongoClient .
cationCoteetio: MongeC Location
-database: MongoDatabase longitude: double
~key: String) :
-latitude: double

+datasetinterface(key : String):
OQetDocumems(‘) List<Document> +compareTo(o : Object) : int
+mai + String[]): +getLongitude() : double
+pingDB(): Exception +getLatitude() : double

Main Controller +toString() : String

-dbinterface: Datasetinterface
-txtjavaconnectionstring: TextField
-btnChooseFiles: Button
-btnConnect: Button

-tgDatatype: ToggleGroup
-rdbMDB: RadioButton

-rdbCSV: RadioButton

-txtNotif: TextArea

+setOptions(state : boolean):
-chooseRDB(event : ActionEvent):

File View Controller :Act):
+refocus():

-main: MainController / +createDBinterface(event : ActionEvent): \ DB View Controller
-btnChooseRestFile: Button -openDatabaseView(): prrT——
+setMainController(mainController : MainController):
+shutdown(): +setMainController(mainController : MainController):
+closeScene(): +shutdown():
-startOver(). {

Graph view Controller

-main: MainController

+shutdown():

ontroller : MainC)

The current class diagram reflects the code available for navigating the different user interfaces,

and connecting to a mongoDB.

Final Design Implementation
e User Interface Pages

Mango Database Connection
IConnected to :
Display cluster info here

File Upload

W Main Menw — [m] * B Main Menu - [m] X
Fresh Time - Confidence in what you do Fresh Time - Confidence in what you do
| have 2 I have a Choose Files
@ MongoDEB Cluster Connection String MongoDB Cluster Connection String
CSV file I®) CsV file
Connect
B Database View — m] e B File View — m] >

[Database Restaurants Area of Service Locations Upload Resturants File Upload Area of Service File
Restaurant Collection Name
lArea of Service Collection Name
Upload Data

Run Mapping Algorithm Run Mapping Algorithm

Start over Start Over

(]]

¥ |
|
P
P
|

1

Go Back Export Graph

Mapping

Start over

e Documentation

Lat Long Adjusted Lat Adjusted Long

(add/sub .1degrees) (add/sub .1degrees)

Maix 40.75857694 -74.03179529 40.85857694 -73.93179529

Min 40.69521011 -74.09850153 40.5952101 -74.19850153

| Difference .| 0.06336683 0.06670624 0.26336683 0.26670624
Difference (ft) 18262.32041 19224.73837 75902.32041 76864.73837

Difference (mi) 3.458772804 3.641048933 1437543947 14.5577156

Grid Spacing 0.003762383286 0.003810089143

Grid Spacing (8 decimal places) 0.00376238 0.00381009

Grid Dimensions = 70 x 70

Team created an excel algorithm to generate the area of service data points based on the farthest
restaurants from each other. This has accompanying documentation on how to use the algorithm
for companies to generate a dataset based on their restaurants they will service with couriers.

e Open Route Service middleware (ORSfactory)
average time: 3.7589699999999997

The algorithm developed by the team was able to generate an http query for the Open Route
Service API and capture and parse the distance matrix response. Above shows the result taken
from a distance matrix of just two locations, so it returns the average time which is the time
taken simply to get from point A to point B.

e Dataset Interface

97 Passenger - From: -74.43788264,48.48421918 To: -74.45944339,48.52478453
98 Passenger - From: -74.43887266,48.52126556 To: -74.43748331,48.47633882
99 Passenger - From: -74.46344543,48.51618473 To: -74.43374151,48.52339661
1@@ Passenger - From: -74.45817843,48.52543859 To: -74.44171739,48,.52557131

The team was able to upload the database to mongoDB and pull 100 random locations and
display them to the console. This utilized not just the dataset interface but the parser class which
parses the response, JSON in this case, so we could print it to console.

Our team chose to focus on these aspects of the design to implement because we thought it
would be best to demonstrate individual functions of the program before integrating them wholly
together by developing the main algorithm. We developed this application with scalability in
mind, and perhaps not knowing the format that this service would be offered. This also proved to
be useful because we were able to incrementally design certain components such as the dataset
interface and the user interface once more features were identified in the requirements
engineering process.

Dependability Engineering Process

e Security

Application will not
show false positive
connection to mongo
database

s 4 .
Dataset Interface pingDE
} MongoDE function
client.geTtg?ug?e“r?r?floerltﬁ;tion[': is geiClusterinformation()) refums -
set to null by default ! checks for correct user client.getClusterinformation()
credentials in the URI string which will be null if there is a
N unsuccessful connection
[/

.
Datasget Interface
constructor takes URI
connection string from
MongoDB from the user
interface

The above diagram is a safety diagram that shows that the application will not provide

connection to mongoDB clusters with incorrect credentials. This code adds data security to our
program by allowing the application to establish a direct connection with the third party dataset
host. To do this we were able to use mongoDB provided API commands to ping the database
with the credentials supplied by the user, thus utilizing their direct credential manager.

e Availability
Trying to improve from the minor project and overcome the constraints placed on the system by
the free routing API, Open Route Service, our team tried to install a local version of the API
using docker. This required a lot of research and culminated in the ORS_backend installation
document in sprint 3. We believe this added to the availability of our system because it
eliminated functional constraints that impeded the availability metric of our application.

Project Management Process
e Quality Assurance Plan
The diagram below is of our Generalized Review Process which is a main part of our
software quality assurance plan.

Define Software
Requirements

| Create Test Cases

Develop Software . . Run Tests

No

Documents Safr'&‘k Assess Software
Resulls Ves equr‘reny -+ Quality

The Review Process goes hand in hand with Design Inspection of the following areas of software
design using checklists catered to each portion of software that is being Inspected. This quality
assurance plan was drafted after the user interface specification document, however program
specification documents will be authored in assessing the quality of the software stage of our

quality assurance plan.

Logic
Performance

e Specification Documents

General requirements and design
Functional and Interface specifications
Requirement traceability

Error handling and recovery
Testability, extensibility

Ul Specification Document_04/23/22 ¢ (=)

File Edit View Insert Format Tools Add-ons
“ o~ @ A B 100% ~ Normaltext ~ Arial
e
SUMMARY +
OUTLINE
— Pages
Main Menu

Dataset Interface Page
Local File Upload Page

Graph and Export Page

Help

E
Last edit was 7 days ago
M+ BIUAS oPQD- SE=TEIE sE-E-EE X
® 3 3 4 5 - 7
ages
- Main Menu

- Dataset Interface Page
- Local File Upload Page
- Graph and Export Page

Main Menu
- Components
- Radio Buttons
- “MongoDB Cluster Connection String”

- Users can select this which makes the Java Connection String text
field and the Connect button visible.

- ‘Caviile”
- Users can select this which makes the “Upload Files” button
visible.
- TextField

- “Java Connection String”
- Initially not visible until the appropriate radio button is selected.
- Button
- ‘Connect’
- Initially not visible until the appropriate radio button is selected.
- Opens the Dataset Interface page if the connection string entered
connects to a database, otherwise outputs the appropriate
message to the user in the Notification Output.
- “Upload Files”
- Initially not visible until the appropriate radio button is selected
- Opens the Local File Upload Page.

Program specification documents are going to be used to assess the quality of code that is being
produced throughout the project. Our team started this to demonstrate niche functionality each

sprint while also tying this to the general use cases and system functional and nonfunctional
requirements. The goal of these documents is to ensure quality code that meets the requirements
of the projects. Above is an example document which analyzes the components of the user
interface, and includes sections with descriptions on customer interactions throughout each use
case.

e Gantt Diagram

W12 Mar27-Apr2 W13 Apr3-g W14 Aprio-16 W15 Apri7-23 W16 Apr24-30 W17 May17 Wis Mays-14 Wi1o May15-21
/T F S SMTWTEFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTW

itle Start date Due date

B Major Project

~ Major Project

~ Sprint1 03/28/2022 04/04/2022 Bsprinti-Kiemank.
Determine Project & 04/01/2022 04/01/2022 (7] Determine Project Specifications from Problem Statement
Draft Components 04/01/2022 04/01/2022 [0 oratt Components Document
Draft Requirements 04/01/2022 04/01/2022 ([pratt Requirements Document
v Determine System / 04/01/2022 04/04/2022 [Determine System Architecture
Determine Datz 04/01/2022 04/04/2022 Determine Database
Determine Fron 04/01/2022 04/04/2022 Determine Front-End
Determine struc 04/01/2022 04/04/2022 Determine structure for interface
Create Conceptual' 04/01/2022 04/07/2022 () create Conceptual View Diagram
CreateUse Case Dic 04/01/2022 04/07/2022 () Create Use Case Diagram
Determine Databas 04/01/2022 04/08/2022 ([oetermine Database Specifications
~ Sprint 2 04/04/2022 04/10/2022 Bsprint2 - Kieman k.
> Determine Location 04/01/2022 04/04/2022 [] Determine Location Basis
> Determine Program 04/04/2022 04/04/2022 [T Determine Programming Language |
Explore Backend OF 04/04/2022 04/11/2022 ([Explore Backend ORS Implementation
Update Use Case D 04/07/2022 04/08/2022 [update Use Case Diagram
Draft Requirements 04/08/2022 04/15/2022 T o) Draft Specification Document
~ Sprint3 04/11/2022 04/17/2022 £ Sprint 3 - Kiernan K.)
> Explore Backend OF 04/11/2022 04/1 2 [Explore Backend ORS Implementation
Updste Requiremer 04/13/2022 04/14/2022 [0 Update Requirement Specification Document
Update Conceptual 04/13/2022 04/15/2022 ([T pdate Conceptual View Diagram
Curate additional d. 04/13/2022 04/18/2022 ([T curate additional dataset of points [consumer]
Create Task-Based 04/14/2022 04/18/2022 ([T create Task-Based Project Outline
Implement Reused 0471472022 05/02/2022 0 J Implement Reused Software
~ Sprint4 04/18/2022 05/02/2022 B)sprint 4 Kiernan K.
Refine Task-Based F 04/18/2022 05/02/2022) Refine Task-Based Project Ouline accordingly.
Draft Gantt Activity 04/25/2022 04/26/2022 ([0 oraft Gante Aciivity Diagram
Draft Ul Specificatic 04/25/2022 04/26/2022 (I Orait Ui Specifications Document
 Sprints £l Sprint 5 - Kiernan K.
Create Data Flow D 04/25/2022 04/29/2022 [Create Data Flow Diagram
Create JUnit Tests 04/25/2022 04/29/2022 ([Create Junit Tests
Create Sequence Di 04/25/2022 04/29/2022 [Create Sequence Diagram
Create Use Case Dic 04/25/2022 04/29/2022 [T create Use Case Diagram
Generate Javadoc 04/27/2022 05/02/2022) Generate Javados
Update Software Sy~ 04/27/2022 05/02/2022 () Update Software Specification Document
Finalize Database Ir 04/28/2022 05/02/2022 ([Finalize Database Import Specification Document
Create Process Viev 04/29/2022 05/02/2022 [T create Process View for FreshTime

e Current Project Plan

Task

Comparient Raguiremen Speciication Appdicalon Festan Tima Estimate (Hours) SWE Activity Companem List

Gading dislance matrix befwean sal of
lecatiors.

‘Opan Foute Sarvica Compimad Softwara FReuse Opan Rioche Sanice

3 Softwara Testng
1 Software Quaity

User Iniedace Appdication User Interiace 1

1 Software Spechicason
Al gt of monga database for
location index of onders and drivers. 2 User Inierface

1 Dataset e
Comploted Sofwarn Ralabiey Algadithm

4
a Parser
4
Disglay the average tme o dalvary. 4

Must b @ minimum 25 rastaurants
availabia o ondar fam. 2

3 Software Tesing
1 Softwars Jualty

Database Managamant
Datasef Intariace Irbegration
Must be & minimum 25 reslauvranis
availabia 1o onser fom.
Must ba abia 10 handla up 1o 1000
howurs ata Bma.
Doocumentation for Frash Food Support for different
InkeraCtion with the System. datahazos
Wrike code for getting colection from wsar Application inberface Tor uploading io
database. dalabase the company wishes o use.
Dafine mefhods for inleraciing with supporbad
dalabases and niluming JS0OM.
Implamant methods tor notfying Lser of
incorect data input or athenise failire o
infertace with datahass of cpen ik Dapencabia Erginaaring
Diafing methods 108 parsing JSON response
from Dataset Inledace and returning usable Support for diffarant
Parsar data. catzhases

Resaant databass S50M mIporsa for
MongoDB and offwer supporied database
Wiike code Tor parsing JSON response tor
suoorind ditsbases

Algorithm Giraarain workiiow for 2 m behaviar.
o gy orons, S—

Dacamentatian

Completed

Our project plan was created early on as a way to keep track of the tasks that were required for
each component of our system in order to build our first baseline. The tasks from this table are
also used in our Gantt diagram which was used to plan out our sprints. In addition to these
project management processes, we made it our goal to include at least one meeting per week.
The meetings included a dedicated recap period for everyone to discuss developments and issues
they encountered the previous week.

Advanced Software Engineering Topics
e Real-time Software Engineering

Architectural patterns for Real Time Software Engineering discovered through analysis of our
system.

1. Observe and React
2. Environmental Control
3. Process Pipeline

Process Pipeline Process Structure based on figure 21.13:

Produwcer j.'-"‘m'. el
Process Yro@ss

The above diagram shows how the process is actually a real time pipeline of data that originates
at the user ends and ends at the user interface display. We identified the time sensitive
components to be the parser and the algorithm.

e Software as a service
We identified possible scalability of the application to include software as a service techniques
and considerations. These can be found in our software as a service plan, but largely resulted in
the identification of our process for implementing this plan for addressing customer feedback.

Compare
Customers to the
ldeal Customer

Defining Ideal Searching for
Customers Customers

Follow-Up With
Customers

Cusfomer
Retention

Finalize the Sale Address Feedback

Testing Process
e Testings Documents

From: |To Google D\stﬁncsi Freshtime Distance
40.62268264,-74.18296424 40.62268264,-74.12227135 19 minutes 10.8 minutes
40.62268264,-74.09728016 40.62268264,-74.12941169 8 minutes 6.28 minutes
40.62268264,-74.05086795 40.62268264,-74.03658727 6 minutes 4.99 minutes
40.62268264,-73.96161370 40.62566009,-74.18296424 35 minutes 31.51 minutes
40.62566000,-74.17225373 40.62566009,-74.14012220 8 minutes 7.33 minutes
40.62566009,-74.11870118 40.62566009,-74.09370999 7 minutes 5.21 minutes
40.62566008,-74.06514863 40.62566009,-74.05800829 5 minutes 1.67 minutes
40.625660089,-74.03658727 40.62566009,-73.98660489 16 minutes 8.58 minutes
40.62863754,-74.18653441 40.62566009,-73.96161370 28 minutes 30.44 minutes
40.62863754,-74.17582390 40.62863754,-74.15440288 5 minutes 5.53 minutes
40.62863754,-74.13655203 40.62863754,-74.09013982 11 minutes 9.05 minutes
40.62863754,-74.07228897 40.62863754,-74.00445574 17 minutes 14.69 minutes
40.62863754,-73.99017506 40.62863754 -73.96875404 10 minutes 7.02 minutes
40.63161499,-74.19010458 40.63161499,-74.17225373 4 minutes 3.60 minutes
40.63161499,-74.11513101 40.63161499,-74.08656965 8 minutes 5.80 minutes
40.63161400,-74.07228897 40.63161499 -74.05086795 19 minutes 17.11 minutes
40.63161499,-74.02230659 40.63161499,-74.01159608 5 minutes 2.00 minutes
40.63161499,-73.98660489 40.63161499,-73.96518387 10 minutes 5.14 minutes
40.63459244,-74 17225373 40.63450244 -74.14726254 8 minutes 5.32 minutes
40.63459244 -74 10799067 40.63459244 -74.02944693 20 minutes 18.44 minutes

The above testing document was curated from the data points which represent the area of service
in Jersey City which was calculated from our excel algorithm. These points were input into
google maps and the distance between them was required in minutes. These values were then
compared to the values returned from parsing the distance matrix returned from Open Route
Service. These tests prove that our middleware for interfacing with Open Route Service works as
well as validates the accuracy of Open Route Service and our choice to use it as our chosen
routing API service.

e User interface document

MainView.fxml
Test Requirement Test Description Expected Output
Case #
1 This method shall not accept an - Empty Connection Error Message: Please
empty string String enter a MongoDB
- Test data: empty string | Cluster Connection
Sinng
2 This method shall accept a valid - Valid Connection String | Confirmation: Valid
MongoDB Cluster Connection - Testdata enter valid string
string MongoDB Cluster
Connection string
3 This method shall not accept an - Invalid Connection Error Message: Please
incorrect MongoDB Cluster String enter a valid MongoDB
Connection string - Testdata: enter invalid | Cluster Connection
Connection string String
4 This method shall not accept an - Empty CSV file Error Message: Please
empty CSV fils - Test data upload empty | upload a CSV file
CSVfile
5 This method shall accept a valid - Vald CSV file Confirmation: Valid
CSViile - Test data upload CS8V file
B This method shall not accept a file - Invalid CSV file Error Message: Please
that is not comma-separated - Testdata: upload a file | upload a valid CSV file
values that is not
comma-separated
values

FileView.fxml

Test Requirement Test Description Expected Output
Case #
1 This method shall not accept an - Empty restaurant file Ermor message: Please
empty restaurant file - Test data: empty enter a restaurant file
restaurant file
2 This method shall accept a valid - Valid restaurant file Confirmation: Valid
restaurant file - Test data: enter valid restaurant file
restaurant file
3 This method shall not accept a file - Invalid restaurant file Error Message: Please
that is not a restaurant file - Testdata: upload afile |upload a valid
that is not a restaurant | restaurant file
file
4 This method shall not accept an - Empty Arez of Service | Error message: Please
empty Area of Service file file enter a Area of Service
- Test Data: empty Area | file
of Service file
5 This method shall accept a valid - Valid Area of Service Confirmation: Valid
Area of Service file file Area of Service file
- Test Data: enter valid
Area of Service file
6 This method shall not accept a file - Invalid Area of Service | Error Message: Please
thatis not a Area of Service file upload a valid Area of
- Testdata: upload a fle | Service file
thatis not a Area of
Service file
7 This method shall not allow a user - Empty or Invalid Eror message: Please
to run Mapping Algorithm with an Restaurant file upload a valid
empty or incorrect Restaurant file - Test data: Uplead Restaurant file before
empty or invalid Mapping Algorithm
Restaurant file
8 This method shall not allow a user - Empty or Invalid Area of | Error Message: Flease
fo run Mapping Algorithm with an Service file upload a valid Area of
empty or incorrect Area of Service - Test data: Upload Service file before
file empty or invalid Area of | Mapping Algorithm
Service File
9 This method shall allow a user to - Valid Restaurant file Confirmation: Valid
run Mapping Algorithm with a - Test data: Upload a restaurant file uploaded
valid Restaurant file valid Restaraunt file
10 This method shall allow a user to - Valid Area of Service Confirmation: Valid
run Mapping Algorithm with a file Area of Service file
valid Area of Service file - Test data: Upload a uploaded
valid Area of Service
file

This above document was created to test the GUI component of FreshTime. The purpose
of this test is to ensure the functionalities of the program and ensure it fulfills all the use
cases.

o JUnit tests

© =dipse-workspace - Eclipse IDE a

File Edit Source te Scarch Project Run Window Help

g O QrQ- @G~ @ F > - v oo aQ i@
12 Package Explorer ¢u JUnit = # [l Contollerjava gl testDistancesjava J) ORSfactory java =0 a

import applica
Finished after 6,697 secands

Runs: 1/1 B Errors: 0 @ Failures: 0

tii] TestDistances [Runner: JUnit 5] (6.372 5)
void test() {

Location B;

new Location(-74.18296424,40.62268264) ;

74.12227135,40.62268264) ;

etDistance(calculator. ge
nes = Algorithm.pars:

-get(1)/60;

estlb) < tolerance);

ery(Locations));
onse(f,1);

= Failure Trace
-74.09728016,40. 62268264 ;

74.12941169,40. 62268264) ;

ery(locations));

A = new Location(-74.09728016,48.62268264) ;
B = new Location(-74.12941169,40.62268264) ;
Locations.add(A);
Locations. add(B);

This above screenshot of the JUnit tests was conducted to test Rob’s getDistance method of the
ORSfactory class which passed with a tolerance of 10 minutes.

Evaluation of Processes

The team agrees our organization processes worked much better this time than that of the
minor project. This is because we started early on with a plan that included subtasks required to
complete each individual component's functionality. Focussing on identifying the correct use
cases and accompanying that with a software specification document, again early in
development, proved to be justifiable, even in the presence of frequent changes, because we were
able to keep a clear goal and vision of what the final application behavior would look like.
Finally, this project we focussed on the future of our application more. This included researching
how we could build our software with real time systems engineering in mind. This proved to
build a strong foundational understanding of what our goal was, and a clear understanding of the
system we are building.

Final Contributions:
e Robert Reid
o Set up the initial file structure and identified the components from the last project
that would be reused. Authored the software reuse documents, software quality
assurance plan, the project plan, and several system modeling and architecture
diagrams. Was initially responsible for programming the general algorithm, the
middleware interface for the routing service API, but ended up also being
responsible for the user interface, as well as all of the accompanying
documentation. Led the project meetings, and kept track of the weekly sprint logs
that detail work done each week.
e Kiernan King
o Kiernan and Rob helped develop a majority of the content for this project. Was in
charge of everything database-related (MongoDB), generated a variety of
diagrams (system modeling, architecture, etc.) and documentation, updated
necessary documents, and helped keep track of weekly sprints and the notes
detailing what was done each week. Also focused on the software reuse (from the
minor project) in pertinence to the database, and was in charge of creating
comments for and generating the Javadoc. Took time to teach Danny how to use
JavaFX and create a user interface testing document.
e Brian Jimenez
o Detailed the software quality assurance plan and drew up the Generalized Review
Process diagram. Conducted research on the future possibility of providing our
Software as a Service. Formed the SaaS plan including the Customer Interaction
Plan Diagram. Gathered testing data points for restaurants in Jersey City and
generated an interactable and customizable excel sheet where users could input
restaurant Lat-Long coordinates and auto generate 4900 potential customer test
coordinates to then input into our software and verify reliability.
e Danny Mitchinson
o Was initially responsible for doing research on supporting more databases as well
as other documentation and system modeling tasks. Completed a business process
diagram, and I curated the initial testing data set from google maps that would be
used to validate the result from Rob’s ORSfactory class. Automated these tests by
using the Junit 4 framework in eclipse. Authored a user interface testing
document that tests the functionality of the FreshTime user interface.
e Wiktor Federowiat
o Was initially responsible for research on databases and programming the parser
algorithm. Created initial version of conceptual and use case diagram. Generated
a javadoc based on Kiernan and Rob’s javadoc comments. Researched and
developed a process pipeline diagram and the real time system analysis document.

