
Major Project Report
Software Engineering 14:332:452:01
Group 2 - Robert Reid, Kiernan King, Daniel Mitchinson, Brian Jimenez, Wiktor Fedorowiat
May 2nd, 2022

*Drafted by Robert Reid and Kiernan King

Introduction
This report serves to highlight the software engineering processes taken by our group in

developing our business application which we called FreshTime. This system’s purpose is to
provide companies that utilize delivery couriers to provide customer service a way to attain
useful metrics in aiding in financial planning.

Final Requirements Table

Functional Requirements

Must allow input of a database of locations of restaurants and points within the area of service.

Must now allow databases with less than 25 restaurants.

Must assume that a maximum of 1000 orders will be served at any given time.

Should calculate the average wait time per order.

Should output a mapping of restaurant orders and drivers that achieve the target average wait
time.

Must have an interface for uploading a database or inputting database connection credentials.

Must include middleware for interfacing with routing service API

Must be able to get rid of invalid locations within the area of service based on organization
parameters.

Non Functional Requirements

Must have a document instructing users on how to format their restaurant and area of service
database.

Must be easy to use.

Must display data graphically.

Must be able to output data to a local file system.



Design Features Specification
3.3 System Features (From Software Specification Document)

- Application User Interface
- Database Management Integration
- System outputs optimal matching of drivers to restaurants in order for customers to have

an average wait time lower than organization needs.
- Display average time assuming 1000 deliveries per hour, and a graph showing how the

number of drivers changes as the number or restaurants is doubled from a sample set of
25.

- Support for different databases
- MongoDB
- mySQL
- Local file upload

Final System Architectural Diagrams
● Conceptual View Diagram



● Process View Diagram

The conceptual view diagram features the components we identified would be required to fulfill
the functional and nonfunctional requirements. Initial version of the conceptual view diagram did
not include a dataset interface component or a dedicated software controller component. The
appearance of the dataset interface component in sprint three reflects the additional feature of
support for multiple database solutions. The process view diagram shows how the system
consists of a single process that initializes a running user interface thread and subsequently the
other software components at runtime. In the process view diagram it can be clearly seen that the
Open Route Service, User, and Formatted User Dataset are third party components of the system
and how they are included in the behavior of the system.

Final System Modeling Diagrams
● Use Case Diagram



The above use case diagram reflects the typical use cases of the FreshTime system. The user is
intended to be a business or otherwise organization that has a delivery service with a set of 25
from a single point to an area of service. The FreshFood company utilizes at least 25 restaurants
to be distributed over an area of service. We decided to make our own dataset using Jersey City
NJ, which consists of over 150 restaurants. In addition, our team developed an algorithm in excel
to generate over 4500 locations around the area that indicate this area of service. Extensive
documentation and instruction on how a business can generate this area of service is available to
customers. Customers of FreshTime should take their dataset and generate a set of data points
using our specifications, and then upload this using our supported database solutions. These
solutions include mongoDB, a local file upload, and projected mySQL support. The user can
then simulate the restaurant driver matching and delivery and export the metrics for their own
purposes.

● Sequence Diagram

The above sequence diagram depicts the operations performed by the algorithm as it returns the
distance matrix from the routing service API, Open Route Service.



● Business Diagram

The above business diagram reflects how the FreshTime application process integrates
into organizational patterns and assists the company in automatically generating useful
metrics based on their restaurant delivery service.

● State Diagram



The above state diagram reflects the current FreshTime application operation as seen from the
user’s perspective.

● Class Diagram

The current class diagram reflects the code available for navigating the different user interfaces,
and connecting to a mongoDB.



Final Design Implementation
● User Interface Pages



● Documentation

Team created an excel algorithm to generate the area of service data points based on the farthest
restaurants from each other. This has accompanying documentation on how to use the algorithm
for companies to generate a dataset based on their restaurants they will service with couriers.

● Open Route Service middleware (ORSfactory)

The algorithm developed by the team was able to generate an http query for the Open Route
Service API and capture and parse the distance matrix response. Above shows the result taken
from a distance matrix of just two locations, so it returns the average time which is the time
taken simply to get from point A to point B.

● Dataset Interface

The team was able to upload the database to mongoDB and pull 100 random locations and
display them to the console. This utilized not just the dataset interface but the parser class which
parses the response, JSON in this case, so we could print it to console.

Our team chose to focus on these aspects of the design to implement because we thought it
would be best to demonstrate individual functions of the program before integrating them wholly
together by developing the main algorithm. We developed this application with scalability in
mind, and perhaps not knowing the format that this service would be offered. This also proved to
be useful because we were able to incrementally design certain components such as the dataset
interface and the user interface once more features were identified in the requirements
engineering process.



Dependability Engineering Process
● Security

The above diagram is a safety diagram that shows that the application will not provide
connection to mongoDB clusters with incorrect credentials. This code adds data security to our
program by allowing the application to establish a direct connection with the third party dataset
host. To do this we were able to use mongoDB provided API commands to ping the database
with the credentials supplied by the user, thus utilizing their direct credential manager.

● Availability
Trying to improve from the minor project and overcome the constraints placed on the system by
the free routing API, Open Route Service, our team tried to install a local version of the API
using docker. This required a lot of research and culminated in the ORS_backend_installation
document in sprint 3. We believe this added to the availability of our system because it
eliminated functional constraints that impeded the availability metric of our application.



Project Management Process
● Quality Assurance Plan

The diagram below is of our Generalized Review Process which is a main part of our
software quality assurance plan.



The Review Process goes hand in hand with Design Inspection of the following areas of software
design using checklists catered to each portion of software that is being Inspected. This quality
assurance plan was drafted after the user interface specification document, however program
specification documents will be authored in assessing the quality of the software stage of our
quality assurance plan.

■ General requirements and design
■ Functional and Interface specifications
■ Requirement traceability
■ Logic
■ Performance
■ Error handling and recovery
■ Testability, extensibility

● Specification Documents

Program specification documents are going to be used to assess the quality of code that is being
produced throughout the project. Our team started this to demonstrate niche functionality each



sprint while also tying this to the general use cases and system functional and nonfunctional
requirements. The goal of these documents is to ensure quality code that meets the requirements
of the projects. Above is an example document which analyzes the components of the user
interface, and includes sections with descriptions on customer interactions throughout each use
case.

● Gantt Diagram



● Current Project Plan

Our project plan was created early on as a way to keep track of the tasks that were required for
each component of our system in order to build our first baseline. The tasks from this table are
also used in our Gantt diagram which was used to plan out our sprints. In addition to these
project management processes, we made it our goal to include at least one meeting per week.
The meetings included a dedicated recap period for everyone to discuss developments and issues
they encountered the previous week.



Advanced Software Engineering Topics
● Real-time Software Engineering

Architectural patterns for Real Time Software Engineering discovered through analysis of our
system.

1. Observe and React
2. Environmental Control
3. Process Pipeline

Process Pipeline Process Structure based on figure 21.13:

The above diagram shows how the process is actually a real time pipeline of data that originates
at the user ends and ends at the user interface display. We identified the time sensitive
components to be the parser and the algorithm.

● Software as a service
We identified possible scalability of the application to include software as a service techniques
and considerations. These can be found in our software as a service plan, but largely resulted in
the identification of our process for implementing this plan for addressing customer feedback.



Testing Process
● Testings Documents

The above testing document was curated from the data points which represent the area of service
in Jersey City which was calculated from our excel algorithm. These points were input into
google maps and the distance between them was required in minutes. These values were then
compared to the values returned from parsing the distance matrix returned from Open Route
Service. These tests prove that our middleware for interfacing with Open Route Service works as
well as validates the accuracy of Open Route Service and our choice to use it as our chosen
routing API service.

● User interface document



This above document was created to test the GUI component of FreshTime. The purpose
of this test is to ensure the functionalities of the program and ensure it fulfills all the use
cases.



● JUnit tests

This above screenshot of the JUnit tests was conducted to test Rob’s getDistance method of the
ORSfactory class which passed with a tolerance of 10 minutes.

Evaluation of Processes
The team agrees our organization processes worked much better this time than that of the

minor project. This is because we started early on with a plan that included subtasks required to
complete each individual component's functionality. Focussing on identifying the correct use
cases and accompanying that with a software specification document, again early in
development, proved to be justifiable, even in the presence of frequent changes, because we were
able to keep a clear goal and vision of what the final application behavior would look like.
Finally, this project we focussed on the future of our application more. This included researching
how we could build our software with real time systems engineering in mind. This proved to
build a strong foundational understanding of what our goal was, and a clear understanding of the
system we are building.



Final Contributions:
● Robert Reid

○ Set up the initial file structure and identified the components from the last project
that would be reused. Authored the software reuse documents, software quality
assurance plan, the project plan, and several system modeling and architecture
diagrams. Was initially responsible for programming the general algorithm, the
middleware interface for the routing service API, but ended up also being
responsible for the user interface, as well as all of the accompanying
documentation. Led the project meetings, and kept track of the weekly sprint logs
that detail work done each week.

● Kiernan King
○ Kiernan and Rob helped develop a majority of the content for this project. Was in

charge of everything database-related (MongoDB), generated a variety of
diagrams (system modeling, architecture, etc.) and documentation, updated
necessary documents, and helped keep track of weekly sprints and the notes
detailing what was done each week. Also focused on the software reuse (from the
minor project) in pertinence to the database, and was in charge of creating
comments for and generating the Javadoc. Took time to teach Danny how to use
JavaFX and create a user interface testing document.

● Brian Jimenez
○ Detailed the software quality assurance plan and drew up the Generalized Review

Process diagram. Conducted research on the future possibility of providing our
Software as a Service. Formed the SaaS plan including the Customer Interaction
Plan Diagram. Gathered testing data points for restaurants in Jersey City and
generated an interactable and customizable excel sheet where users could input
restaurant Lat-Long coordinates and auto generate 4900 potential customer test
coordinates to then input into our software and verify reliability.

● Danny Mitchinson
○ Was initially responsible for doing research on supporting more databases as well

as other documentation and system modeling tasks. Completed a business process
diagram, and I curated the initial testing data set from google maps that would be
used to validate the result from Rob’s ORSfactory class. Automated these tests by
using the Junit 4 framework in eclipse. Authored a user interface testing
document that tests the functionality of the FreshTime user interface.

● Wiktor Federowiat
○ Was initially responsible for research on databases and programming the parser

algorithm. Created initial version of conceptual and use case diagram. Generated
a javadoc based on Kiernan and Rob’s javadoc comments. Researched and
developed a process pipeline diagram and the real time system analysis document.


